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Thermal-mechanical-metallurgical coupled FEM model 

Thermal-mechanical-metallurgical coupled model during hot stamping 

Microstructure evolution 
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1, Diffusional phase transformation  

JMAK type model (1) 

K-V type model (2) 

Scheil  additivity hypothesis  (Calculating non-isothermal transformation 
from isothermal kinetics)  

(1) M. Avrami., et al. The Journal of Chemical Physics.1939 (7),1103. 
(2) J.S. Kirkaldy, et al. International Conference on Phase Transformations in Ferrous Alloys.1983, 125-148. 

2, Diffusionaless phase transformation  

Koistinen-Marburger equation 
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Austenite decomposition kinetics 
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Decomposition of austenite 
isothermal ferrite, pearlite and banitic transformation 
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Local plastic flow below the yield stress, Greenwood-Johnson model 

Volume change due to the thermal process 

Volume change due to phase transformation 

Chen, XJ., Xiao, NM., Li, DZ., Li, GY. Model Simul Mater Sci Eng 2014, 22(6) 065005:.  

Martensitic transformation 
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C (%) Si (%) Mn (%) P (%) S (%) Cr (%) Ni(%) B(ppm) 

Measured 0.27 0.29 1.25 0.007 <0.005 0.22 0.013 39 

Chemical composition for 22MnB5 in weight percent 
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The TTT diagram for the 22MnB5 
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The Thermal conductivity and specific heat for the 22MnB5 

Thermal conductivity, specific heat and  heat transfer coefficient are experimentally 
measured as the function of temperature. 

Calculation parameters 
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The CCT diagram prediction 
and comparison with dilatational 

experiments 
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The Jominy end-quenching test and the microstructure prediction 
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Unloading spring-back and Residual stress 
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Chen, XJ., Xiao, NM., Li, DZ., Li, GY. NUMISHEET 2014.  

The expansion due to martensitic transformation is 
benefit for controlling the unloading spring-back. 
 
The expansion due to martensitic transformation 
results in the smaller distribution of residual stress. 
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Theoretical analysis of diffusional austenite decomposition 

 The CCT curves are easily to be obtained in most industrial design  
 

 The isothermal kinetics curves are hard to be obtained When considering the 
influence of the deformation  as well as the heating process  

Is it possible to calculate the transformation kinetics undergoing 
arbitrary thermal path from CCT curves? 

 The mathematical relationship between isothermal and non-isothermal transformation 

 Generalized additivity rule of transformation kinetics based on the CCT curves 
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La: The non-isothermal path curve 
Lb: The isothermal transformation curve (f(x) = 0)  
Lc: The incubation contribution curve 
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The mathematical relationship between isothermal and non-isothermal transformation 
– incubation time 

Incubation contribution 
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DO NOT consider incubation time in JMAK equation: only for constant cooling rate  (Rios P R. Acta Materialia 2005) 

K(T),  n(T) and τ  can be obtained 

f(T) and g(T) are the non-isothermal and isothermal 
transformation functions respectively 

The mathematical relationship between isothermal and non-isothermal transformation – 
growth kinetics 

CONSIDER incubation time in JMAK equation: for arbitrary cooling path 
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Kinetics contribution coefficient increases 
with the decreasing transformation 
temperature, implying that higher cooling 
degree results in the shorter incubation 
time. 

The generalized additivity rule of CCT curve 
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The generalized additivity rule of CCT curve 
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Brief summary  

 A computational model which describes the interactive influence of thermal history, 

phase transformation and its mechanical responses is developed for simulating hot 

stamping high strength boron steel.  

 The introduction of incubation time in JMAK type equations provide the more reasonable 

simulation results of phase transformation kinetics.The hardness prediction agrees well 

with the Jominy test, especially at the range of middle and high cooling rate.  

 A theoretical relationship between the isothermal and non-isothermal transformation 

kinetics and the generalized additivity rule for CCT curve are built. 

 This generalized model can be used to calculate the transformation kinetics undergoing 

arbitrary thermal path (including the cooling and heating) using the experimental CCT or 

CHT curves. 



 
 
 

Thank you for your attention! 
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