

1st International Conference on Hot Stamping of UHSS

Aug. 21-24, 2014, Chongqing, China

Spring-back Control in Automotive Door Inner Panel Stamping

Reporter : Peng ZHANG

School of Materials Science and Engineering Hefei University of Technology

1. Background

- 2. Inverse Approach (IA)
- 3. Two-step forming process & results
- 4. Optimization method & results
- 5. Conclusions

Find innovative ways to meet requirements of Safety & fuel economy

Material used on the Volkswagen Passat

■ Deep-draw steel <140MPa

HSS 180-240MPa

AHSS 260-300MPa

UHSS 300-420MPa

Mould hardened>1000MPa

Background

Complex structure with irregular holes and narrow strip

Springback value

Front door inner panel

 $(\sigma_f)_0$ ——Yield stress *E* ——Modulus

> Control springback and other forming defects(cracking, wrinkling)

- 1. Background
- 2. Inverse Approach (IA)
- 3. Two-step forming process & results
- 4. Optimization method & results
- 5. Conclusions

Inverse Approach (IA)

Only consider the initial blank configuration and final workpiece configuration. Omit the intermediate steps. Time saving and high efficiency

	I Calculate the stamping force
To predict	Stress & strain distribution on the finial workpiece(FLD)
	Thickness reduction diagram
	Initial shape of the blank

Estimate Initial Blank configuration

Mapping the workpiece nodes and meshes to the plane along the tool path

• σ , ε and thickness distribution of the final configuration

- 1. Background
- 2. Inverse Approach(IA)
- 3. Two-step forming scheme & results
- 4. Optimization method & results
- 5. Conclusions

Two steps forming process

The second forming step

Parametric design of addendum surface

Typical addendum surface (cross-section) Modified addendum surface

Two draw beads distribute at the threshold region

The second step forming result

The second step forming result

Spring-back of the 6 key points at the threshold, sidewall A & side wall B

	1	2	3	4	5	6
Sidewall A	2.536	3.678	4.850	4.691	4.909	5.479
Sidewall B	1.268	2.245	4.223	6.375	7.834	8.548
Threshold	4.748	5.993	6.003	9.878	10.03	12.48

Exceed the limit of product tolerance

1. Background

- 2. One-step Finite Element Method
- 3. Two-step forming scheme & results
- 4. Optimization method & results
- 5. Conclusions

Optimize drawbead——side wall

Drawbead height $h \rightarrow h/2$

Material stacks at the edge of the panel and indentation of drawbead flows to the panel

Optimize addendum Surface

Convex draw bar(Bump) treated as a drawbead Counter draw bar treated as a radius of the drawbead

draw depth can be reduced significantly Balance the material flow Increase the contact area of blank and the tools More material stretched sufficiently

Comparison of Springback value

Optimize—window frame

Result of optimized forming scheme

Side wall A

Side wall B

acceptable product

1. Background

- 2. One-step Finite Element Method
- 3. Two-step forming scheme & results
- 4. Optimization method & results
- 5. Conclusions

- 1. The convex addendum surface can decrease the spring-back of the sidewall region
- 2. The outer open draw bead decrease the spring back of the threshold region
- 3. Added stiffening rib on addendum surface of the window frame can enhance the resistance of spring-back

Zpai2008@163.com