

Numerical Analysis on bullet Penetration Resistance of Heat Treated Lightweight C-grade Bulletproof Steel Plates Zhang Jingwen 2014.08.22

Contents

1. Finite element models

1.1 Meshing

Outer diameter *D* of bullet : 7.62mm. Outer diameter *d* of bullet core : 4.7mm. Maximum element size: 0.8mm. Minimum element size: 0.2mm. Weight of bullet: 5.5g. Bullet core and the outer layer are connected with the same nodes.

Actual size of the bulletproof steel plate $:305 \text{mm} \times 305 \text{ mm}$ Model size of the bulletproof steel plate $:120 \text{mm} \times 120 \text{ mm}$ Maximum element size: 2.0mm.

Minimum element size : 0.5mm.

Layer number of thickness direction: 4-8(according to different thickness)

InformationBulletBulletproof Steel PlateNode amount4466773205-131769Element amount4325257600-115200

Bulletproof Steel Plate model

1.2 Material models

Bullet

Bulletproof Steel Plate

Mat-Plastic-Kinematic

MATL3 in Dyna module of HyperMesh platform

Constitutive equation:
$$\sigma_{\rm Y} = \left[1 + \left(\frac{\tilde{\varepsilon}}{c}\right)^{\frac{1}{p}}\right] \left(\sigma_0 + \beta E_p \varepsilon_p^{eff}\right)$$

$$E_p = \frac{E_{\rm tan}E}{E - E_{\rm tan}}$$

$\sigma_{\rm Y}$ —actual yield stess	Material parameters of bullet						
σ_0 —initial yield stess	Material parameter	Bullet outer layer	Bullet core				
β —hardening parameter	(kg/m ³)	7.8	7.8				
C P—strain rate parameter	γ	0.3	0.3				
$\varepsilon_{\rm P}^{\rm en}$ —effective plastic strain;	E (GPa)	210	210				
<i>E</i> —elastic modulus;	σ (MPa)	235	345				
E_{tan} —shear modulus; E_{tan} —plastic hardening modulus	Failure strain ε	1.2	1.2				
p prustie maraeming modulus.							

1.2 Material models

	Bullet			Bulletproof Steel Plate							
		Chemica	C-grade	bulletproo	f steel pla	ates					
Steel	С	Si	Mn	Р	S	Al	Nb+V	T+Ti C	Cr +Ni	В	
C-grade	0.38~0.44	0.31~0.37	1.15~1.25	≤0.015	≤0.015	0.046	≥0.1	14	≥1.0	0.0016	
Hot stamping technology was listed in Ref.[7].					Material parameters of bulletproof Steel Plate						
			Material parameter		neter	Material No.					
MAT-simplified-Johnson-Cook						C1	C2		R		
MATL98 in Dyna module of HyperMesh platform				(kg/m ³)			7.8	7.8		7.8	
				γ			0.3	0.3		0.3	
Effect of temperature is not considered.			E (GPa)			204	197		206		
I I I I I I I I I I I I I I I I I I I				$\sigma_{\rm s}$ (MPa)			1515	1400)	1470	
Constitutive equation: $\sigma = (A + B\varepsilon^{n}) \left(1 + C \ln \frac{\dot{\varepsilon}}{\dot{\varepsilon_{0}}}\right) (1 - T^{*m})$				Tensile	stress (M	IPa)	2200	2035	5	1775	
				Fracture elongation			0.063	0.052	2	0.058	
				Johnson-Cook constitutive models of steel plates							
				Material Johnson-Cook constitutive models						3	
σ —equivalent stress; ε —equivalent strain; A, B, C, n—material parameters; $\dot{\varepsilon}$ — effective plastic strain rate $\dot{\varepsilon}_0$ —referring strain rate					C1 $\sigma = (1670 + 3197\varepsilon^{0.0.525}) \left(1 + 0.00414 \ln \frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}\right)$					$4\ln\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}$	
					C2 $\sigma = (1500 + 3536\varepsilon^{0.5477}) \left(1 + 0.0043 \ln \frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}\right)$						
					R $\sigma = (1600 + 1328\varepsilon^{0.5238}) \left(1 + 0.005724 \ln \frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}\right)$						

1.3 Boundary condition

2. Results comparison

2.1 Approaches of deformation

2.2 Comparison of plate deformation

The shape of bullet holes are very similar when thoroughly penetration occurs.
The orientation of cracks are basically the same when cracking occurs.
Even yielding bullet pits, there' s no obviously difference.

2.3 Comparison of bullet deformation

Comparison of bullet core between simulation and experiment at the speed of 720m/s

3. Analysis and discussion

3.1 Steel plate C1

Simulation results of steel plate C1								
Bullet speed (m/s)	Plate thickness t (mm)	Deformation mode	Deformat ion height <i>h</i> (mm)	Energy absorption of plate (J)	Maximum contact force (KN)	Residual speed (m/s)	Energy absorption of bullet (J)	
	3.0	Thoroughly penetration	11.0	486	150	86	240	
720	3.1-3.4	crack	7.2-10.3	516-530	161-164	0	245-268	
	3.5	Yielding bullet pit	6.8	545	166	0	276	
LS-DYNA user input Result : EAbulietImodeNc1Ct_3.0.720.ct_3.0.720.bid Loadcase 1 : Time = 0.00000 Frame 1								
Z X y		Z A XY			Z 4 KY			
Thickness: 3.0mm			hickness: 3.	.3mm		Thicknes	ss: 3.5mm	

3.2 Steel plate C2

Plate thickness t (mm)	Deformation mode	Deformat ion height <i>h</i> (mm)	Energy absorption of plate (J)	Maximum contact force (KN)	Residual speed (m/s)	Energy absorption of bullet (J)
3.1	Thoroughly penetration	10.3	464	148	116	212
3.2-3.6	crack	7.3-10.2	522-527	153-160	0	236-272
3.7	Yielding bullet pit	6.8	545	162	0	284
Result : E-Yulle	er input (20, h3d 000000 irame 1	Result : E	LS-DYNA user input \bullet\model\c2\c2_36_720.b3d Loadcase 1 : Time = 0,000000 Frame 1			
ckness: 3.1r	nm T	hickness: 3.	5mm	Z A XY	Thicknes	s: 3.7mm
	thickness <i>t</i> (mm) 3.1 3.2-3.6 3.7 Result : E-Vulle	thickness t Deformation mode (mm) 3.1 Thoroughly penetration 3.2-3.6 crack 3.7 Yielding bullet pit Result Englet/modelt/2/c2_3.1_720/c1_3.1_720.15d Loadcase 1: Time = 0.00000 Frame 1	thickness t Deformation mode $height h$ (mm) 3.1 Thoroughly penetration 10.3 3.2-3.6 crack 7.3-10.2 3.7 Yielding bullet pit 6.8 Control of the set of	thickness t (mm) Deformation mode logist h of plate (mm) (J) 3.1 Thoroughly penetration 10.3 464 3.2-3.6 crack 7.3-10.2 522-527 3.7 Yielding bullet pit 6.8 545 Read: Effective of the service of the	thickness t (mm) Deformation mode $height h$ of plate force (KN) 3.1 Thoroughly penetration 10.3 464 148 3.2-3.6 crack 7.3-10.2 522-527 153-160 3.7 Yielding bullet pit 6.8 545 162 ISOVA were mode to the model and the second sec	thickness t (mm) Deformation mode height h (mm) (J) (KN) speed (m/s) 3.1 Thoroughly penetration 10.3 464 148 116 3.2-3.6 crack 7.3-10.2 522-527 153-160 0 3.7 Yielding bullet pit 6.8 545 162 0 Best f intermedicate 2.31 (2004) served intermedicate 2.35 (2004) served intermedicate 3.35 (2004) served intermedicate 3.5 (2004) served intermed

3.3 Steel plate R

Simulation results of steel plate R

4. Conclusions

4. Conclusions

◆The constitutive equation considering the sensitivity of strain rate of material. Work hardening, strain rate hardening and dynamic yield stress equation with plastic hardening modulus are included in bullet material model and Johnson-Cook equation is applied to fit the stress-strain curves of bulletproof steel plates.

◆The comparisons of bullet deformation, plate deformation and cracking all indicate the reliability of simulation results.

◆When the plates C1, C2 and R with tensile strength of 2200MPa, 2035MPa and 1775MPa respectively are shoot at 720m/s, the limit thickness, simultaneously acquired by both simulation and experiment, are respectively 3.5mm, 3.7mm and 4.0mm.

As a powerful method to analyze the limit thickness of bulletproof steel plate, numerical simulation effectively reduces work and cost.

